If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+56X-784=0
a = 1; b = 56; c = -784;
Δ = b2-4ac
Δ = 562-4·1·(-784)
Δ = 6272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6272}=\sqrt{3136*2}=\sqrt{3136}*\sqrt{2}=56\sqrt{2}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-56\sqrt{2}}{2*1}=\frac{-56-56\sqrt{2}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+56\sqrt{2}}{2*1}=\frac{-56+56\sqrt{2}}{2} $
| 7.5x=100(92500000-x) | | F=x-9+6x | | D^3-3D^2+4D-2)y=0 | | (x+12)+(8x-6)+(8x-6)=180 | | m-9=29*2 | | 3b=768 | | 25+7x=445 | | -5(x-5=-25+5x | | (2v+7)(6-v)=0 | | (105-x)+(2x+84)=180 | | y=-1/4+17/4 | | 7x-15+-4x+25=180 | | (8x-5)=(x+5) | | r^2-3=45 | | 5x+6+10x+39=180 | | -2a+7=-5 | | x-25=4x+19 | | 17x+67=13x+79 | | P^3-28=3p | | 0.5x-0.8-6.9x=-6.7-6.4x-5.9 | | w/5.55=1.2 | | w/6.85=1.4 | | 104=(8a-4) | | (4p+2)=(5p+7) | | (2k-2)=(k+2)=90 | | (2k-2)=(k+2) | | (8r-6)=(7r+3) | | 9x-7=-9x+15 | | 12x+44=- | | 15.5=y7.9y=8.4 | | 2d+18=12-6(d+7)2 | | 20=15x+5x^2 |